Roman Rosipal
International projects
ReHaB – Towards an ecologically valid symbiosis of BCI and head-mounted VR displays: focus on collaborative post-stroke neurorehabilitation | |
Smerovanie k spoľahlivej a uživateľsky prijateľnej symbióze BCI a VR: zameranie na kolaboratívnu neurorehabilitáciu po cievnej mozgovej príhode | |
Program: | ERANET |
Duration: | 1.1.2022 – 31.12.2024 |
Project leader: | Ing. Mgr. Rosipal Roman, DrSc. |
Annotation: | A growing body of evidence suggests that integrated technologies of brain-computer interfaces (BCI) and virtual reality (VR) environments provide a flexible platform for a series of neurorehabilitation therapies, including significant post-stroke motor recovery and cognitive-behavioral therapy. When immersed in such an environment, the subject\’s perceptual level of social interaction is often impaired due to the sub-optimal quality of the interface lacking the social aspect of human interactions.The project proposes a user-friendly wearable low-power smart BCI system with an ecologically valid VR environment in which both the patient and therapist collaboratively interact via their person-specific avatar representations. On the one hand, the patient voluntarily, and in a self-paced manner, manages their activity in the environment and interacts with the therapist via a BCI-driven mental imagery process. This process is computed and rendered in real-time on an energy-efficient wearable device. On the other hand, the therapist\’s unlimited motor and communication skills allow him to fully control the environment. Thus, the VR environment may be flexibly modified by the therapist allowing for different occupational therapy scenarios to be created and selected following the patient\’s recovery needs, mental states, and instantaneous responses. |
National projects
cBCI-VR – Collaborative BCI post-stroke neurorehabilitation using a patient-therapist interactive VR environment | |
Pacient-terapeut kolaboratívna BCI-VR neurorehabilitácia po cievnej mozgovej príhode | |
Program: | Plán obnovy EÚ |
Duration: | 1.9.2024 – 31.8.2026 |
Project leader: | Ing. Mgr. Rosipal Roman, DrSc. |
Annotation: | A growing body of evidence suggests that integrated brain-computer interface (BCI) technologies and virtual reality (VR) environments provide a flexible platform for a range of neurorehabilitation therapies, including significant motor recovery and cognitive-behavioral therapy following stroke. When a subject is immersed in such an environment, their perceptual level of social interaction is often impaired due to a suboptimal interface quality that lacks the social aspect of human interactions. The project proposes a user-friendly intelligent BCI system with a suitable VR environment in which both patient and therapist interact through their person-specific avatar representations. On the one hand, the patient voluntarily and at his/her own pace controls his/her activity in the environment and interacts with the therapist through a BCI-driven mental imagery process. On the other hand, the therapist\’s unrestricted motor and communication skills allow for full control of the environment. Thus, the VR environment can be flexibly modified by the therapist, allowing for the creation and selection of different occupational therapy scenarios according to the patient\’s recovery needs, mental states, and immediate reactions. |
TInVR – Trustworthy human–robot and therapist–patient interaction in virtual reality | |
Dôveryhodná interakcia človek–robot a terapeut–pacient vo virtuálnej realite | |
Program: | SRDA |
Duration: | 1.7.2022 – 30.6.2026 |
Project leader: | Ing. Mgr. Rosipal Roman, DrSc. |
Annotation: | We aim to study specific forms of social interaction using state-of-the-art technology – virtual reality (VR) which is motivated by its known benefits. The project has two main parts, human–robot interaction (HRI) and therapist–patient interaction (TPI). The interactions are enabled using head-mounted displays and controllers allowing the human to act in VR. We propose two research avenues going beyond the state-of-the-art in respective contexts. In HRI, we will develop scenarios allowing the humanoid robot to learn, understand and imitate human motor actions using flexible feedback. Next, we develop scenarios for testing and validating human trust in robot behavior based on multimodal signals. We will also investigate physical interaction with a humanoid robot NICO. In TPI with stroke patients, we develop a series of VR-based occupational therapy procedures for motor and cognitive impairment neurorehabilitation using an active and passive brain-computer interface, and we will validate these procedures. We expect observations from HRI experiments to be exploited in TPI. The proposed project is highly multidisciplinary, combining knowledge and research methods from psychology, social cognition, robotics, machine learning and neuroscience. We expect to identify features and mechanisms leading to trustworthy processes with a human in the loop, as a precondition of success, be it a collaborative task or treatment in VR. |
Smart deep brain stimulation as a treatment strategy in treatment-resistant depression | |
Inteligentná hĺbková mozgová stimulácia ako inovatívna stratégia pre liečbu mozgových porúch | |
Program: | VEGA |
Duration: | 1.1.2022 – 31.12.2025 |
Project leader: | Ing. Mgr. Rosipal Roman, DrSc. |
Annotation: | Impaired connectivity between different brain areas underlines the pathophysiology of multiple brain disorders. It is possible that impaired connectivity between the prefrontal cortex and ventral pallidum is involved in depression. Smart deep brain simulation, combining real-time detection of the neuronal activity in the prefrontal cortex with the stimulation of the ventral tegmental area might be thus effective in depression. We aim to examine the cortico-tegmental connectivity and to test the antidepressant-like effectiveness of the smart deep brain stimulation in an animal model of depression. |
Causal analysis of measured signals and time series | |
Kauzálna analýza nameraných signálov a časových radov | |
Program: | VEGA |
Duration: | 1.1.2022 – 31.12.2025 |
Project leader: | RNDr. Krakovská Anna, CSc. |
Annotation: | The project is focused on the causal analysis of measured time series and signals. It builds on the previous results of the team, concerning the generalization of the Granger test and the design of new tests in the reconstructed state spaces. The aim of the project is the development of new methods for bivariate and multidimensional causal analysis. We will see the investigated time series and signals as one-dimensional manifestations of complex systems or subsystems. We will also extend the detection of causality to multivariate cases – dynamic networks with nodes characterized by time series. Such complex networks are common in the real world. Biomedical applications are among the best known. Brain activity, determined by multichannel electroencephalographic signals, is a crucial example. We want to help show that causality research is currently at a stage that allows for ambitious goals in the study of effective connectivity (i.e., directed interactions, not structural or functional links) in the brain. |