Projects

     
Selection of projects according to criteria:
Project status:
Project type:
Program:
Project leader:
   
 
MEDUSSE – Seasonal-to-decadal climate predictability in the Mediterranean: process understanding and services
Sezónna až dekádová predpovedateľnosť klímy v Stredomorí: pochopenie procesov a implementácie
Program: COST
Project ID: CA23108
Duration: 8.10.2024 – 7.10.2028
Project leader: RNDr. Krakovská Anna, CSc.
Annotation: Climate forecasting has enormous potential influence in different socio-economic sectors, such as agriculture, health, water management, and energy. Actionable climate information is particularly relevant at seasonal-to-decadal timescales, where predictability is linked to slow fluctuations of the system such as those in the ocean, sea-ice and land-surface, thus bridging weather/sub-seasonal predictions (mainly relying on atmospheric initial condition) with future projections (mainly based on atmospheric radiative forcing). Seasonal-to-decadal climate forecasting has progressed considerably in recent years, but prediction skill over the Mediterranean is still limited. Better understanding the drivers of regional climate anomalies as well as exploring untapped sources of predictability constitute a much-needed and timely effort.Climate variability and change pose significant challenges to society worldwide. As a result, there is a growing demand to develop improved climate information products and outlooks to help decision making and sustainable development. This is particularly critical in the Mediterranean, a region sensible to natural hazards (e.g. droughts, floods) and vulnerable to climate stress (i.e. global warming). Such an improvement can only be achieved by coordinating efforts of research groups with different expertise and trans-disciplinary. In this Action, both the scientific challenge and societal challenge will be addressed by establishing a network of experts on climate variability, predictability, prediction and application. The Action will provide support to increase awareness and capability, and guidance to suitably evolve climate knowledge into services. Specific objectives include cross-cutting training and collaboration, empowering national hydro-meteorological agencies, and fostering a continuous communication between climate researchers and stakeholders.
PhoBioS – Understanding interaction light – biological surfaces: possibility for new electronic materials and devices
Pochopenie interakcie svetlo – biologické povrchy: možnosti pre nové elektronické materiály a zariadenia
Program: COST
Project ID: COST CA 21159
Duration: 19.10.2022 – 18.10.2026
Project leader: RNDr. Hain Miroslav, PhD.
Annotation: It is known that various biological surfaces are covered with micro- and nano-structures that perform a variety of functions (e.g., anti-reflective, structural coloration, anti-fouling, pro- or anti-adhesion …) and inspire us to many industrial applications. In recent years, there has been a significant upsurge of research in this field. The main objective of the COST Action "Understanding light-biological surface interactions: opportunities for new electronic materials and devices" is to bring together scientists coming from different disciplines in this lively area of research, focusing on the photonic effects of nano- and micro-structures of biological surfaces and their bionic applications. The consortium will ensure cross-inspiration between participants coming from different research fields and foster research innovation and possible industrial development.
Project website: https://www.cost.eu/actions/CA21159/
DYNALIFE – Information, Coding, and Biological Function: the Dynamics of Life
Informácia, kódovanie a biologická funkcia: Dynamika života
Program: COST
Project ID: CA21169
Duration: 19.9.2022 – 18.9.2026
Project leader: RNDr. Krakovská Anna, CSc.
Annotation: In the mid-twentieth century two new scientific disciplines emerged forcefully: molecular biology and information-communication theory. At the beginning cross-fertilisation was so deep that the term genetic code was universally accepted for describing the meaning of triplets of mRNA (codons) as amino acids.However, today, such synergy has not take advantage of the vertiginous advances in the two disciplines and presents more challenges than answers. These challenges are not only of great theoretical relevance but also represent unavoidable milestones for next generation biology: from personalized genetic therapy and diagnosis, to artificial life, to the production of biologically active proteins. Moreover, the matter is intimately connected to a paradigm shift needed in theoretical biology, pioneered long time ago in Europe, and that requires combined contributions from disciplines well outside the biological realm. The use of information as a conceptual metaphor needs to be turned into quantitative and predictive models that can be tested empirically and integrated in a unified view. The successful achievement of these tasks requires a wide multidisciplinary approach, and Europe is uniquely placed to construct a world leading network to address such an endeavour. The aim of this Action is to connect involved research groups throughout Europe into a strong network that promotes innovative and high-impact multi and inter-disciplinary research and, at the same time, to develop a strong dissemination activity aimed at breaking the communication barriers between disciplines, at forming young researchers, and at bringing the field closer to a broad general audience.
DYNALIFE – Information, Coding, and Biological Function: the Dynamics of Life
Informácia, kódovanie a biologická funkcia:Dynamika života
Program: COST
Project ID: CA21169
Duration: 11.1.2023 – 18.9.2026
Project leader: Mgr. Chvosteková Martina, PhD.
ReHaB – Towards an ecologically valid symbiosis of BCI and head-mounted VR displays: focus on collaborative post-stroke neurorehabilitation
Smerovanie k spoľahlivej a uživateľsky prijateľnej symbióze BCI a VR: zameranie na kolaboratívnu neurorehabilitáciu po cievnej mozgovej príhode
Program: ERANET
Project ID: ERA-net CHIST ERA IV
Duration: 1.1.2022 – 31.12.2024
Project leader: Ing. Mgr. Rosipal Roman, DrSc.
Annotation: A growing body of evidence suggests that integrated technologies of brain-computer interfaces (BCI) and virtual reality (VR) environments provide a flexible platform for a series of neurorehabilitation therapies, including significant post-stroke motor recovery and cognitive-behavioral therapy. When immersed in such an environment, the subject\’s perceptual level of social interaction is often impaired due to the sub-optimal quality of the interface lacking the social aspect of human interactions.The project proposes a user-friendly wearable low-power smart BCI system with an ecologically valid VR environment in which both the patient and therapist collaboratively interact via their person-specific avatar representations. On the one hand, the patient voluntarily, and in a self-paced manner, manages their activity in the environment and interacts with the therapist via a BCI-driven mental imagery process. This process is computed and rendered in real-time on an energy-efficient wearable device. On the other hand, the therapist\’s unlimited motor and communication skills allow him to fully control the environment. Thus, the VR environment may be flexibly modified by the therapist allowing for different occupational therapy scenarios to be created and selected following the patient\’s recovery needs, mental states, and instantaneous responses.
The technologically undemanding of aluminate glasses with interested optical properties
Technologicky nenáročná príprava hlinitanových skiel so zaujímavými optickými valstnosťami
Program: Open Mobility
Project ID: Open-Mob-2022-06
Duration: 1.1.2023 – 31.12.2024
Project leader: Ing. Majerová Melinda, PhD.
PARQ – Sudden cardiac arrest prediction and resuscitation network: Improving the quality of care
Predikcia náhlej srdcovej zástavy a systém resuscitácie: Zvýšenie kvality zdravotnej starostlivosti
Program: COST
Project ID: CA19137
Duration: 26.10.2020 – 25.10.2024
Project leader: Ing. Švehlíková Jana, PhD.
Annotation: Sudden cardiac arrest (SCA) causes 2 million deaths each year in Europe alone. Since SCA strikes unexpectedly and is lethal within minutes if untreated, solving this problem requires (1) recognizing individuals at risk and designing preventive strategies, (2) providing timely and effective treatment. Because SCA mostly occurs out-of-hospital, SCA victims rely on first-response treatment provided by citizens, firefighters and emergency medical services. There are large regional differences in SCA survival rates across Europe (1-30%). This suggests that regional differences in individual risk prediction, prevention and treatment have a major impact on the chance to survive. To improve survival rates across Europe it is imperative to study: 1) inherited, acquired, and environmental risk factors of SCA across European regions; 2) regional differences in preventive measures and first-response treatment strategies and their effectiveness. The PARQ Action will facilitate this research by forming a pan-European network of excellence in SCA and resuscitation science. This network includes investigators from different disciplines including cardiology, molecular biology, resuscitation science, emergency medicine, general practice and health economics. The main objectives of the Action are to promote development of standards for collection of clinical data and biological samples and to harmonize data analysis. This will aid in development of risk prediction models based on inherited, acquired and environmental risks. The PARQ action will focus on European differences in first-response treatment and develop guidelines. In summary, the PARQ Action investigators will enable breakthrough developments to decrease the incidence of SCA and improve survival, while reducing the vast regional European differences in survival rates.
Project website: https://www.cost.eu/actions/CA19137