Ústav ÚstavKontakt KontaktMapa stránky Mapa stránkyPrivátna zóna Privátna zónaEnglish version English version
Slovensk� akad�mia vied (SAV)
Hlavná stránka
Kontakt
Organizačná štruktúra
História
- - - - - - -
Infraštruktúra
Pracovníci
Oddelenia
Knižnica
Spoločné pracoviská
- - - - - - -
Projekty
Vybrané výsledky
Publikácie a citácie
Výročné správy
- - - - - - -
Doktorandské štúdium
Pedagogická činnosť
Pracovné príležitosti
Zverejňovanie informácií
Ústav arrow Semináre arrow Seminár: Regression Quantiles and Their Application in the Optimal Threshold Selection in a POT Model
Seminár: Regression Quantiles and Their Application in the Optimal Threshold Selection in a POT Model

25.3.2015

Pozývame Vás na seminár z matematickej štatistiky, s názvom "Regression quantiles and their application in the optimal threshold selection in a POT model", ktorý sa uskutoční v stredu, 4. mája 2015, o 9:50 na Seminári FMFI UK v Bratislave (miestnosť XII FMFI UK). Prednášať bude Mgr. Martin Schindler Ph.D. (Katedra aplikované matematiky, Fakulta přírodovědně-humanitní a pedagogická, Technická univerzita v Liberci).

Regression quantiles and their application in the optimal threshold selection in a POT model

 

Martin Schindler

Technical University of Liberec
Univerzitní náměstí 1410/1, 461 17 Liberec 1, Czech Republic
E-mail: Táto e-mailová adresa je chránená pred spamovými robotmi, potrebujete mať zapnutý Javascript aby ste ju mohli vidieť.

 

In the first part the regression quantiles and regression rank scores, as natural extensions of ordinary quantiles and ranks, are introduced. Both linear and nonlinear regression quantiles and rank scores are considered. Computational problems in the nonlinear models are mentioned and a method how to work them out is proposed and applied to real data.

Next, the peaks-over-threshold (POT) method with a non-stationary threshold for estimating high quantiles is investigated. It was shown that using (95%) regression quantile as the time-dependent threshold instead of a constant treshold can beneficial. It is assumed that a linear trend is present in the data and so a linear regression quantile as the threshold is used. The aim is to find the threshold (regression quantile) which would be optimal with respect to the reliability of the estimates of high quantiles by means of Monte Carlo simulations. Based on this criterion stationary and regression quantile thresholds are compared. It is described how the choice of the optimal threshold depends on the sample size, estimated quantile or the estimate itself.

 

Keywords: Regression quantiles, Nonlinear regression, Peak Over Threshold, Return level.

 
Measurement Science Review (on-line časopis)
Konferencie
Semináre
Aktuality