Ústav ÚstavKontakt KontaktMapa stránky Mapa stránkyPrivátna zóna Privátna zónaEnglish version English version
Slovensk� akad�mia vied (SAV)
Hlavná stránka
Kontakt
Organizačná štruktúra
História
- - - - - - -
Infraštruktúra
Pracovníci
Oddelenia
Knižnica
Spoločné pracoviská
- - - - - - -
Projekty
Vybrané výsledky
Publikácie a citácie
Výročné správy
- - - - - - -
Doktorandské štúdium
Pedagogická činnosť
Pracovné príležitosti
Zverejňovanie informácií
Ústav arrow Semináre arrow Seminár: Fitting conics and quadric surfaces to correlated data
Seminár: Fitting conics and quadric surfaces to correlated data

12.1.2017

Pozývame Vás na seminár Oddelenia teoretických metód, s názvom Fitting conics and quadric surfaces to correlated data, ktorý sa uskutoční v utorok, 17. januára 2017, o 10:00 v Ústave merania SAV. Prednášať bude doc. RNDr. Eva Fišerová Ph.D. z Katedry matematické analýzy a aplikací matematiky Přírodovědecké fakulty Univerzity Palackého v Olomouci.

 

Fitting conics and quadric surfaces to correlated data

 

Eva Fišerová

Palacký University in Olomouc, Czech Republic 

 

Fitting quadratic curves and quadratic surfaces to given data points is a fundamental task in many fields like engineering, astronomy, physics, biology, quality control, image processing, etc. The classical approach for fitting is geometric fit based on minimization of geometric distances from observed data points to the fitted curve/surface. In the lecture, we focus on solving the problem of geometric fit to correlated data using the linear regression model with nonlinear constraints. The constraints are represented by the general equation of the certain curve/surface. In order to obtain approximate linear regression model, these nonlinear constraints are being linearized by the first-order Taylor expansion. The iterative estimation procedure provides locally best linear unbiased estimates of the unknown algebraic parameters of the considered curve/surface together with unbiased estimates of variance components. Consequently, estimates of geometric parameters, volume, surface area, etc. and their uncertainties can be determined.

References

  1. Chernov, N. (2010). Circular and Linear Regression: Fitting Circles and Lines by Least Squares. Chapman & Hall / CRC.
  2. Koning, R., Wimmer, G., Witkovsky, V. (2014). Ellipse fitting by linearized nonlinear constraints to demodulate quadrature homodyne interferometer signals and to determine the statistical uncertainty of the interferometric phase. Meas. Sci. Technol. 25, 115001.
  3. Rao, C.R., Kleffe, J. (1988). Estimation of Variance Components and Applications. North- Holland, Amsterdam-Oxford-New York-Tokyo.
 
Measurement Science Review (on-line časopis)
Konferencie
Semináre
Aktuality